ICMS

Empresas que emitem documentos fiscais para fraudar o fisco com a transferência de crédito do ICMS sem a circulação de mercadorias causam prejuízo ao erário público e, por conseguinte, à sociedade. Diversas iniciativas de combate a fraudes fiscais têm utilizado, com sucesso, técnicas de análise de dados e aprendizagem de máquina. Este trabalho buscou investigar o uso dessas técnicas na identificação de uma prática específica de fraude fiscal realizada por empresas popularmente conhecidas como “empresas noteiras”, que formadas exclusivamente para emitir créditos não devidos de ICMS, imposto sobre operações relativas à circulação de mercadorias e sobre prestações de serviços de transporte interestadual, intermunicipal e de comunicação. Com base na análise documental e em consulta com auditores e especialistas, foram identificadas tipologias e variáveis relevantes na determinação de eventos de sonegação fiscal realizados pelas empresas noteiras. Em torno dessas variáveis, procedeu-se à coleta e à preparação de dados provenientes da Secretaria de Fazenda do Distrito Federal. Com esses dados, foi possível explorar o uso de modelos preditivos baseados em aprendizagem de máquina capazes de apontar comportamentos potencialmente fraudulentos. Os bons resultados obtidos por esses modelos demonstram seu potencial como parte de uma sistemática de monitoramento e auditorias fiscais realizadas pelos órgãos fazendários.

Leia o artigo de Gunther Siqueira Lemos Gomes e Remis Balaniuk em https://www.scielo.br/j/rap/a/sy68bRbXvnfDVXxFCqPQGck/?format=pdf&lang=pt